Improving SAMC Using Smoothing Methods: Theory and Applications to Bayesian Model Selection Problems
نویسنده
چکیده
Stochastic approximation Monte Carlo (SAMC) has recently been proposed by Liang, Liu and Carroll (2007) as a general simulation and optimization algorithm. In this paper, we propose to improve its convergence using smoothing methods and discuss the application of the new algorithm to Bayesian model selection problems. The new algorithm is tested through a change-point identification example. The numerical results indicate that the new algorithm can outperform SAMC and reversible jump MCMC significantly for the model selection problems. The new algorithm represents a general form of the stochastic approximation Markov chain Monte Carlo algorithm. It allows multiple samples to be generated at each iteration, and a bias term to be included in the parameter updating step. A rigorous proof for the convergence of the general algorithm is established under verifiable conditions. This paper also provides a framework on how to improve efficiency of Monte Carlo simulations by incorporating some nonparametric techniques.
منابع مشابه
Improving Samc Using Smoothing Methods : Theory and Applications to Bayesian Model
Stochastic approximation Monte Carlo (SAMC) has recently been proposed by Liang, Liu and Carroll [J. Amer. Statist. Assoc. 102 (2007) 305–320] as a general simulation and optimization algorithm. In this paper, we propose to improve its convergence using smoothing methods and discuss the application of the new algorithm to Bayesian model selection problems. The new algorithm is tested through a ...
متن کاملOrthogonalized smoothing for rescaled spike and slab models
Rescaled spike and slab models are a new Bayesian variable selection method for linear regression models. In high dimensional orthogonal settings such models have been shown to possess optimal model selection properties. We review background theory and discuss applications of rescaled spike and slab models to prediction problems involving orthogonal polynomials. We first consider global smoothi...
متن کاملStochastic Approximation in Monte Carlo Computation
The Wang–Landau (WL) algorithm is an adaptive Markov chain Monte Carlo algorithm used to calculate the spectral density for a physical system. A remarkable feature of the WL algorithm is that it is not trapped by local energy minima, which is very important for systems with rugged energy landscapes. This feature has led to many successful applications of the algorithm in statistical physics and...
متن کاملیک مدل بیزی برای استخراج باناظر گرامر زبان طبیعی
In this paper, we show that the problem of grammar induction could be modeled as a combination of several model selection problems. We use the infinite generalization of a Bayesian model of cognition to solve each model selection problem in our grammar induction model. This Bayesian model is capable of solving model selection problems, consistent with human cognition. We also show that using th...
متن کاملApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007